type
status
date
slug
summary
tags
category
icon
password
LLM进化到现在,GPT4o独树一帜,在利用LLM极大提高工作中的效率,创造更多产品的同时,我希望能够GPT4o变成我某门课的老师,让我一步步地对一门课有一个比较健全且深入的认识。那这就涉及到如何设计一门我们想学的课。对于理工科大部分的学科来说,一门课的设计无非就是一个合适的学习路径,科学的教授方法和适当的练习。我们在用GPT4o来设计课程时,要同时注意输入和输出(费曼学习法)。于是,我将尝试用GPT4o来进行课程大纲规划、课程内容、课后阅读材料和homework。
LLM进化到现在,GPT4o独树一帜,在利用LLM极大提高工作中的效率,创造更多产品的同时,我希望能够GPT4o变成我某门课的老师,让我一步步地对一门课有一个比较健全且深入的认识。那这就涉及到如何设计一门我们想学的课。对于理工科大部分的学科来说,一门课的设计无非就是一个合适的学习路径,科学的教授方法和适当的练习。我们在用GPT4o来设计课程时,要同时注意输入和输出(费曼学习法)。于是,我将尝试用GPT4o来进行课程大纲规划、课程内容、课后阅读材料和homework。
 

课程大纲

Here's a detailed training arrangement for quantitative stock investment skills, divided into four levels: junior, intermediate, senior, and expert. Each level integrates stock market professional knowledge with coding practice.
 

Junior Level

Objective: Build foundational knowledge of stock markets and quantitative investment, and introduce basic coding for data handling.

Outline:

  1. Introduction to Stock Markets:
      • Overview of stock market basics (types of stocks, exchanges, market participants).
      • Key concepts: stock prices, volume, market capitalization, dividends.
      • Understanding financial data (OHLC data, moving averages, etc.).
  1. Programming Basics for Quantitative Analysis:
      • Introduction to Python for financial analysis:
        • Data types, loops, conditionals.
        • Python libraries: pandas, numpy, matplotlib.
      • Loading and handling financial data:
        • Fetching stock data from APIs (e.g., Yahoo Finance, Alpha Vantage).
        • Cleaning and preprocessing data.
  1. Basic Indicators and Analysis:
      • Calculating moving averages (SMA, EMA).
      • Introduction to basic indicators like RSI and MACD.
      • Visualization of stock trends using matplotlib.
  1. Mini Project:
      • Develop a script to fetch stock data, compute simple indicators, and plot price movements with annotations.

Intermediate Level

Objective: Introduce more complex indicators, risk management, and simple strategy implementation.

Outline:

  1. Intermediate Stock Market Concepts:
      • Understanding risk and return (Sharpe ratio, drawdowns).
      • Overview of sectors and indices.
      • Basics of portfolio diversification.
  1. Advanced Data Handling and Visualization:
      • Handling multiple stocks data simultaneously.
      • Introduction to time series analysis:
        • Autocorrelation, stationarity tests.
      • Visualizing performance metrics and comparisons.
  1. Strategy Implementation Basics:
      • Introduction to backtesting frameworks (e.g., backtrader, pyalgotrade).
      • Implementing crossover strategies (e.g., SMA crossover).
      • Introduction to stop-loss and take-profit mechanisms.
  1. Mini Project:
      • Design and backtest a simple moving average crossover strategy for a given stock.

Senior Level

Objective: Develop advanced quantitative models and dive deeper into machine learning techniques for stock prediction.

Outline:

  1. Advanced Quantitative Concepts:
      • Mean reversion and momentum strategies.
      • Factor models (Fama-French, multi-factor models).
      • Understanding volatility (GARCH models).
  1. Machine Learning for Stock Prediction:
      • Introduction to supervised learning:
        • Linear regression, decision trees, random forests.
      • Feature engineering:
        • Creating lagged features, technical indicators as inputs.
      • Evaluation metrics: MSE, R-squared.
  1. Advanced Backtesting Techniques:
      • Walk-forward analysis.
      • Handling transaction costs and slippage.
      • Risk management: position sizing and portfolio optimization.
  1. Mini Project:
      • Build a predictive model to forecast stock price movement based on historical data and backtest its performance.

Expert Level

Objective: Achieve mastery in quantitative investment by building robust models and deploying live trading systems.

Outline:

  1. Advanced Topics in Quantitative Finance:
      • Options pricing models (Black-Scholes, binomial models).
      • Statistical arbitrage and pairs trading.
      • Deep learning applications in finance (LSTMs, transformers for time series).
  1. Algorithm Design and Live Trading:
      • Implementing live trading systems using APIs (e.g., Interactive Brokers, Alpaca).
      • Building and deploying automated trading bots.
      • Monitoring and maintaining trading systems in real-time.
  1. Optimization and Performance Tuning:
      • Hyperparameter optimization for machine learning models.
      • Parallel processing for backtesting large datasets.
      • Cloud deployment for scalable trading systems.
  1. Capstone Project:
      • Design, implement, and deploy an end-to-end quantitative trading strategy.
      • Demonstrate live trading simulation with a comprehensive performance report.

Training Approach:

  • Workshops: Weekly interactive sessions for theory and code walkthroughs.
  • Assignments: Real-world problem-solving tasks aligned with the training content.
  • Mentorship: Pair junior-level trainees with senior colleagues for guidance.
  • Progress Assessment: Regular quizzes, coding challenges, and project presentations.
 
 
用GPT4学量化投资 — Junior Level - Unit 1: Introduction to Stock Markets and Data HandlingVLM系列论文阅读-Mixed Preference Optimization (MPO)
Loading...
Yixin Huang
Yixin Huang
一个热爱生活的算法工程师
Latest posts
时间序列论文阅读 — TimeCMA(AAAI 2025)
2025-4-23
时间序列论文阅读-ChatTime: A Unified Multimodal Time Series Foundation Model Bridging
2025-4-23
VLM系列论文阅读-Mixed Preference Optimization (MPO)
2025-2-6
VLM系列论文阅读 — Flamingo
2025-2-6
认识你自己,才是这件事的最终乐趣 — 抄录
2025-2-5
用GPT4学量化投资 — Junior Level - Unit 1: Introduction to Stock Markets and Data Handling
2025-1-23
Announcement
🎉NotionNext 4.5已经上线🎉
-- 感谢您的支持 ---
👏欢迎更新体验👏